Maîtrisez l'Intelligence Artificielle
Maîtrisez les concepts fondamentaux du machine learning et du Deep learning et créez vos propres intelligences artificielles. Des ateliers pratiques sur les principales applications d'IA: Computer Vision, Multimedia Object Analysis and Classification, Sentiment Analysis, Natural language processing ,Data Analysis, ...
Part I. Machine Learning for Classification & Clustering
Introduction to Machine Learning as a Level of Artificial Intelligence
Design & Implementation of Machine Learning Algorithms
Machine Learning Types: Clustering Vs Classification Vs Forecasting
Machine Learning Algorithms (Neural Network, Naive Bayes, SVM, Similarity-based Classification): How to train, validate, and test
Performance Evaluation of Machine Learning for classification and clustering : Confusion Matrix, Recall, Precision and F1-score
Practical Session 1: Implementation of Machine Learning for classification
Practical Session 2: Implementation of Machine Learning for clustering
Practical Session 3: Deployment of Machine Learning Models on a Web Application
Part II. Machine Learning and Deep Learning for Forecasting
Forecasting Types: Univariate Vs Multivariate
Forecasting Terms: Short Vs Mid Vs Long terms
Deep Learning Architectures Based on Recurrent Neural Networks (RNN)
A step-by-step explanation of Long Short Term Memory (LSTM): from RNN to LSTM
Hyperparameters configuration of LSTM for interpretable architectures
Performance Evaluation of Machine Learning for forecasting: MSE, MAE, and MAPE
Practical Sessions 4, 5, 6 & 7: Implementation of Machine Learning and deep learning algorithms for Multivariate & Univariate Forecasting
Practical Session 8: Deployment of Machine and Deep Learning Forecasting Models on a Web Application
Part III. Machine Learning & Deep Learning for Computer Vision: Classification Vs Detection Vs Segmentation
Why Deep Learning: is crucial for Multimedia Object Representation & Classification?
Design & Implementation of Deep Learning Architectures
Deep Learning Architectures based on feed-forward
Convolutional Neural Network: from scratch to transfer learning
Using Convolution Neural Network for Detection & Segmentation: Case of Yolo
Practical Session 9: Implementation of CNN from scratch for Image classification: binary Vs multiclass
Practical Session 10: Implementation of CNN using transfer learning for Image classification: binary vs. multiclass
Practical Session 11: Implementation of Yolo for Object Detection & Segmentation
Practical Session 12: Deployment of Machine and Deep Learning Models on a Web Application for Computer Vision
Inscrivez-vous maintenant pour reserver votre place
Le tarif est de 900 dinars (280 euros) qui couvre les frais de la formation (4 jours), les pauses-café, bloc-notes, supports pédagogiques.
École d'hiver de la technologie
(21-24 Décembre 2022)
L' école d'hiver de l'embarqué et de l'Intelligence artificielle dans sa quatrième édition a permis au participants de découvrir les différentes plateformes émergentes de nos jours: Raspberry pi 4 et ESP32. Des ateliers diversifiés sur la commande à distance, domotique, robotique, computer vision, IoT, deep learning, machine learning, Natural Language Processing, Datamining, ...
Pourquoi TANIT
Nous engageons les meilleurs formateurs